Comparison of Two Parallel Technologies in 200G Optical Modules

According to data disclosed by Google, Facebook, etc., the internal traffic of these Internet giant data centers is increasing by nearly 100% every year. Currently, some Internet giants deploying 100G earlier have begun to seek higher-speed solutions, and the choice of next-generation data centers has become A topic that everyone is enthusiastic about.

The 400G Ethernet standard is preceded by the 200G Ethernet standard, which may reflect the industry’s mindset—more optimistic about 400G, or 200G is just a transition solution for 400G.

But directly from 100G to 400G is actually not very scientific.

  1. First of all, from the data center side, we need to rebuild the ultra-large-scale data center and define a new specification architecture. The requirements for rack power in the 400G era switch will be quite high, and the traditional air-cooling heat dissipation is more difficult.
  2. Furthermore, the 400G data center will use PAM4 technology, and the PAM4 technology will make the system less transparent and difficult to manage. The traditional NRZ technology together with the parallel technology can make the data center easy to manage.

In order to more flexibly adapt to the needs of the future data center and achieve a perfect transition to the 400G data center, Gigalight recently completed a low-cost data center internal parallel optical interconnection solution based on 200G NRZ transmission. This paper mainly compares 200G NRZ—Two parallel technologies in the solution, and two products as an example for simple analysis.

Fiber Parallel Solution—Is It Single- or Multi-Mode?

The traditional parallel optical module products are mainly based on optical interconnect technology of multimode fiber, and have the advantages of high bandwidth, low loss, no crosstalk and matching and electromagnetic compatibility problems. They have gradually replaced copper-based electrical interconnection products and are used in cabinets. High-speed interconnection between the boards, the connection distance is up to 300 meters under the OM3 fiber.

At the same time, in order to apply to longer-distance transmission solutions, Parallel Single-Mode (PSM) optical modules have emerged, mainly using FP lasers to transmit 2km in single-mode fiber and DFB to transmit 10km applications, which is more difficult than multi-mode interconnection technology.

Data center cabling is a very complicated problem. The choice of multimode fiber or single-mode fiber has been the subject of heated discussion in the industry. There are also choices in major data centers. For example, in the 100G era, Facebook chooses single mode, Google chooses both multimode and single mode. At the same time, BAT (Baidu, Alibaba, Tencent) chooses multimode. From the perspective of cost, multimode fiber is expensive and multimode optical module is cheap. Single mode fiber is cheap and single mode optical module is expensive. Therefore, it is easy to combine the cost of fiber and optical module to obtain the relationship between distance and cost. Taking the 100G solution as an example, the cost advantage of a multimode solution is very obvious when the fiber distance is within 100 meters.

The parallel technology route is characterized in that each pair of multimode fibers respectively carries one optical signal. At present, IEEE’s 400G SR16 standard is a 16x 25G parallel solution, which requires 16 pairs of multimode fiber. It is far more than the 12-core MPO widely used in the 100G era, which will lead to a significant increase in cost; more importantly, multimode optical modules rely on The low-cost VCSEL optical chip solution, 2020, is likely to still require more than 12-core MPO’s 8-pair multimode fiber. The 400G SR4 that the existing 12-pin MPO can accommodate seems to be in the foreseeable future.

Therefore, in 2020, if there is no open and standardized multi-mode wavelength multiplexing technology (such as SWDM technology), low-cost VCSEL 100G technology can not achieve breakthrough, 400G multi-mode fiber solution cost advantage will no longer be obvious, single-mode fiber It may become mainstream in large-scale data centers, and short- and medium-range single-mode parallel solutions will be a cost-effective alternative to multi-mode parallel solutions.

——Yang Zhihua, “Top Ten Hotspots of Data Center Network Technology in 2020″

200G PSM8 vs. 200G SR8

Based on Gigalight’s unique PSM series product line, Gigalight recently released a new product—200G QSFP-DD PSM8, a high-speed product of single-mode parallel technology.

To achieve long-distance transmission, single-mode fiber with low dispersion loss must be used. To achieve high coupling efficiency between single-mode fiber and semiconductor, it is necessary to shape the light field emitted by the semiconductor laser to maximize the incident light field and the intrinsic optical field of the fiber.

And the 200G QSFP-DD SR8 uses an 8-channel 850nm VCSEL array that complies with the 100GBASE-SR4 protocol standard. The 200G QSFP-DD SR8 is a multimode parallel product. With the traditional VCSEL advantage platform, Gigalight uses a simple, efficient and reliable fiber coupling process technology to add a 45° prism between the laser and the fiber. The special material treatment of the fiber surface increases the coupling efficiency of the fiber to over 80%.

The two products are similar in that they belong to the optical modules in the 200G data center solution, and all use the QSFP-DD package, which can use the 16-core MTP.

The advantage of QSFP-DD is that the 1U panel can achieve a density of 36x 200G/400G, and it is forward- and backward compatible with QSFP, and is compatible with existing QSFP28 optical modules and AOC/DAC.

The main difference is that the 200G QSFP-DD PSM8 adopts an 8-way 1310nm single-mode fiber parallel solution with a transmission distance of up to 10km. The 200G QSFP-DD SR8 adopts a multi-mode fiber parallel solution and can travel over the OM4 fiber link. Up to 100m.

Summary

The multi-mode parallel solution is the core of the current data center development, and the transmission distance between the switch and the core switch is just within the scope of the multi-mode fiber.

Corning has introduced OM5 fiber in the past few years, but it has not caused the expected market reaction. The SWDM short-range wavelength division multiplexing scheme is only promoted by a few manufacturers—it is indeed lacking in the market.

In the near future, if a general enterprise data center wants to continue to use standard-certified solutions and reduce the cost of optical components, you can choose multi-mode parallel optics—after all, SMBs do not need as large a capacity as 400G.

However, if it is in the construction and deployment process of a very large-scale data center, especially considering the scalability of the system and the flexibility of the system, we should probably consider the single-mode parallel solution.

In the eyes of some people of insight, the single-mode parallel solution increases the number of fiber cores, but overall reduces the maintenance complexity, is easier to manage, and is easier to upgrade from 100G to 400G later. Without increasing fiber resources, the current 100G CWDM4 based on wavelength division multiplexing can only evolve to 200G FR4, and 100G PSM4 can be upgraded to 400G DR4).

——Li Mofei, “Review of Data Center: Cost Technology is Concise and Reconfigurable”

In general, the technology roadmap for major switch and transceiver vendors shows a very clear and simple migration path for customers deploying parallel optics. So when optics are available and migrated from 100G to 200G or 400G, their fiber infrastructure still exists and no upgrades are required.

Reliability, product life and maintenance costs are all interrelated. The parallel single-mode solution represented by 200G QSFP-DD PSM8 in total cost should be the cabling guide for large-scale data centers in the future.

Originally article: Comparison of Two Parallel Technologies in 200G Optical Modules

Gigalight 100G Optical Modules Passed the Connectivity Test of Multiple Cloud Service Providers

Shenzhen, China, May 19, 2018 – Gigalight announced the 100G series optical transceiver modules have passed the connectivity test of multiple cloud service providers. The Gigalight 100G series products include 100G QSFP28 SR4 multi-mode VCSEL optical modules and 100G QSFP28 CWDM4 single-mode WDM optical modules. The interconnection test covers the mainstream cloud devices of major brand equipment vendors and the optical transceiver module products of our partners.

Qualified 100G Series Optical Transceiver Modules

Gigalight has always been among the top 10 companies in the world of optical interconnects with its invention of active optical cables and deep innovation. However, Gigalight is essentially an integrated solution provider of optical transceiver modules and optical network devices. Gigalight ships a large number of 10G multimode and 10G single-mode optical modules and 40G multimode SR4 optical modules to the world. In the field of 40G single-mode optical modules, Gigalight’s main customers include global TIE1 equipment vendors. The cloud service providers have directly verified Gigalight’s 100G optical modules since the end of 2017. The successful interconnection results so far have greatly encouraged Gigalight’s confidence in deploying 100G optical modules in bulk in the cloud.

Global Data Center Infrastructure Ecosystem

Global Data Center Infrastructure Ecosystem

Gigalight has a deep optical interconnect product line. Among this product line, the multimode optical interconnect products based on the VCSEL technology applications are the traditional advantages of Gigalight, including the cost-effective and reliable 100G QSFP28 SR4 optical modules with good compatibility. The single-mode 100G series short-range optical modules were developed in 2016 and this time passed the threshold of full-brand compatibility and interoperability testing after optical design thresholds and reliability verification thresholds. Finally, they will not lose pace in the industry’s striding forward in 2018.

As a global optical interconnect design innovator, Gigalight has prepared the best 100G optical modules for industry users.

About Gigalight:

Gigalight is a global optical interconnection design innovator. We design, manufacture and supply various kinds of optical interconnect products including optical transceivers, passive optical components, active optical cables, GIGAC™ MTP/MPO cablings, and cloud programmers & checkers, etc. These products are designed for three main applications which are Data Center & Cloud Computing, Metro & Broadcast Network, and WIreless & 5G Optical Transport Network. Gigalight takes the advantages of exclusive design to provide customers with one-stop optical network devices and cost-effective products.